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Option 3: Bag E contains either exclusively black marbles,
or exclusively white marbles
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Bag Z contains marbles, beyo

Bag Z contains a mix of rough
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Option 3: Bag Z contains either exclusively black marbles,
or exclusively white marbles



The prior

P(h|d) x P(d|h)P(h)

Priors include
- Expectations about word meanings (week 3)
« Expectations about regularity / variability (weeks 4-5)

« Expectations about degeneracy / holism / compositionality (week 7)



Where does the prior come from??

P(h|d) x P(d|h)P(h)

- Could be due to very general constraints on learning (e.g. the simplicity prior
used last week)

« Could be due to learning in another domain (e.g. a regularity preference
because you’ve learned the universe tends to be predictable?)

« Could be domain-specific expectations that you are somehow born with (see
upcoming weeks for a model of this!)

« Could be learned domain-specific expectations
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Quine (1960): meaning
underdetermined by data

* The four legged animal
| * The two legged animal
ﬁg@ - Some part of either (the leg, the hat, ...)

Some property of some part (the length
of the leg, the material of the hat)

//U - Nothing to do with what you’re seeing
p (“I’'m hungry”)

- Something weirder (a wet nose and a
waggable tail, but only until Scotland
win the World Cup)

=N

There are in principle infinitely many possible
meanings for “doggy” which would be consistent with
this usage, and any possible sequences of usages




| earners must have some constraints on word
meaning

Minimally: to rule out the extremely wacky word meanings
But maybe they are more detailed:

» EXxpectations about meanings (e.g. words refer to whole
objects, words refer to basic-level categories, words
generalise by shape of referent, ...: Machamara, 1972;
Markman, 1989; Landau, Smith & Jones, 1988)

- Expectations about words (e.g. word meanings are mutually
exclusive: Markman & Wachtel, 1988)
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The shape bias

* In English, shape of objects is the most reliable cue to category membership,
and therefore the most reliable cue to object names

* |.e. concrete count nouns tend to generalise by shape, not texture, colour,
material etc: cups are cup-shaped, chairs are chair-shaped, trousers are
trouser-shaped, ...

- Children aged 3+ seem to be aware of this, and systematically generalise new
object names by shape (e.g. Landau et al., 1988): the shape bias

“This is a lug” “Where's the lug”
o e L
@ w &
- Ty
A 1 "

Matches shape  \1atches colour Matches texture



Learning the shape bias (L. Smith et al, 2002)

- 18 month old English-speaking children (i.e. too young to show the shape
bias)

« Experimental group get 7 week training programme on novel objects whose
labels generalise by shape

dax




Learning the shape bias (L. Smith et al, 2002)

- Week 8: first-order generalisation test with trained label and 3 novel objects

“This is a lug” “Where’s the lug”

Matches shape I\/IatcheTQ, colour Matches texture

+ Control group: 36% generalise by shape (i.e. chance)

* Trained children: 88% generalise by shape



Learning the shape bias (L. Smith et al, 2002)

« Week 9: second-order generalisation test with novel label and 3 novel objects

“This is a veet” “Where's the veet”
Matches shape Matches colour Matches texture

-+ Control group: 34% generalise by shape (i.e. chance)

« Trained children: 70% generalise by shape



Learning the shape bias (L. Smith et al, 2002)
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How do we capture this in a model?

- Rather than being fixed, the prior is itself learned (and the learned prior can
therefore guide subsequent learning)

« We can model learning the prior as a process of Bayesian inference in the
usual way

« Of course this means we need a prior over our prior, which is why these
models are called hierarchical
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The same thing in maths for those that prefer it

The familiar non-hierarchical model

P@|d) x P(d|O)P(6)
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The same thing in maths for those that prefer it

The familiar non-hierarchical model

P@|d) x P(d|9)PO]|a)

Hierarchical model, inferring (¢
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Hierarchical model, inferring @

P@|d) [ P(d|9)P(O| a)P(a)
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These learned biases are probably everywhere

Just a hunch, but | think we might be massively underestimating the power of
learned biases to shape learning and explain the surprising precocity of
language learners

- Basic level bias, shape bias, ...

- Mutual exclusivity - develops over time (Halberda, 2003), is weaker in
bilingual children (Houston-Price et al., 2010)

« Syntactic categories

- Correlations between semantic/phonological cues and syntactic category
(e.g. in English, nouns tend to be longer than verbs, 4-year-olds know this:
Cassidy & Kelly, 1991)

« Pragmatic inference?

» Structure dependence in syntax??



Summary and next up

* Priors can be learned
- We can capture this as Bayesian inference, using a hierarchical model

* There is strong evidence that humans learn to learn in this way

» Several options available on the readings page for this lecture, from brief
and non-technical to long and somewhat technical

 Lab: a simple hierarchical learning model
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