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Lab 3, Question

“Can you produce a result like the Hudson Kam & Newport (2005) results for

adults, i.e. that adult learners fairly accurately track the frequency of a linguistic
variant in their input? What kinds of priors and what kinds of data does this

work for?”

- What would “tracking the frequency of a linguistic variant in the input” look
like in our model?

« Under what conditions does this occur?



Lab 3, Question 2

“Can you produce a result like the Hudson Kam & Newport (2005) results for

children, i.e. that children tend to regularise, sometimes producing only one
variant even when their data contains variation? Again, what kinds of priors and

what kinds of data does this work for?”
- What would regularisation look like in our model?

« Under what conditions does this occur?
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Regularity prior (alpha=0.1)
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Data obscures the prior  P(6|d) o< P(d|0)P(6)
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Data obscures the prior  P(6|d) o< P(d|0)P(6)
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What makes languages regular?

- We’re interested in explaining why languages are the way they are (e.qg.
regular)

- We’re arguing it’s due to something about our learning bias (e.g. learners
prefer regular languages)

Learning bias T Language
structure




The problem of linkage

{ Learning bias J . __.{ Language ]
- structure

THE PROBLEM OF LINKAGE

- But there’s something wrong here. Given enough data, the different
learning biases seem to lead to the same outcome.

» Two problems:
- Where does the data come from in the first place?

- And how exactly does learning bias (a property of an individual’s

cognition) lead to language structure (a universal property of population
behaviour)?



Solving the problem of linkage

* Where does the language data come from
that our learners have to acquire?
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Solving the problem of linkage

* Where does the language data come from
that our learners have to acquire?

[ Utterances J
* From other learners! v

- Language persists over time by repeatedly & f[ e j

being learned and used by multiple

individuals in a population [ Utterances }_/%
T\

- It is out of this continual process of iterated
learning that the structure of language &\—{ Utterances j

emerges

* Note, this is cultural rather than biological
evolution



Modelling iterated learning
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Watching the prior reveal itself

Uniform prior, generation 1
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Watching the prior reveal itself

Uniform prior, generation 2
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Watching the prior reveal itself
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Watching the prior reveal itself
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Watching the prior reveal itself
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Watching the prior reveal itself
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Watching the prior reveal itself
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Watching the prior reveal itself
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Watching the prior reveal itself
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Watching the prior reveal itself

Uniform prior, generation 10
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Watching the prior reveal itself

Regularity prior, generation 1
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Watching the prior reveal itself

Regularity prior, generation 2
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Watching the prior reveal itself

Regularity prior, generation 3
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Watching the prior reveal itself

Regularity prior, generation 4
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Watching the prior reveal itself

Regularity prior, generation 5

3500

3000 A

2500 -

2000 -

1500 -

1000 -

Number of chains with this theta

500 -

theta



Watching the prior reveal itself

Number of chains with this theta
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Watching the prior reveal itself
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Watching the prior reveal itself
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Watching the prior reveal itself
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Watching the prior reveal itself
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Modelling iterated learning
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An iterated vocabulary learning experiment

* 6 objects, each object has two labels

* Training: see objects labelled 10 times each
» Testing: label each object 10 times

- Initial language:

* Object 1: “tef” 10 times, “gos” 0 times
« Object 2: “seb” 9 times, “nuk” 1 time

- Object 3: “buv” 8 times, “kal” 2 times

« Object 6: “vit” 5 times, “lem” 5 times



10tem, 0 gos 9seb, 1 nuk 8buy, 2 kal 5 vit, 5 Lem
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Smith, K., & Wonnacott, E. (2010). Eliminating
unpredictable variation through iterated
learning. Cognition, 116, 444-449.
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An iterated artificial language learning experiment

* 4 animals, presented in singular or plural 7
- _— = %::}_.;

 Training: see scenes plus descriptions @

» Testing: produce descriptions

- Initial language:

2 o=

glim cow glim cow fip
OR

glim cow tay




Variation usually maintained...
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... but becomes predictable

1/2 -

Conditional entropy of marker given noun

Generation



Simple system of conditioned variation

Predictable variation, rather than zero variability,
gradually develops: a simple noun class system

“fip” nouns “tay” nouns




Summary and next up

Beta-binomial model allows us to model how learners respond to variability

Two important insights:
* If you study learning in individuals, data can obscure the prior

» The prior can reveal itself over iterated learning

Lab experiments show this same cumulative, gradual regularization can
produce patterns of conditioned variation, like we see in natural languages

Lab: iterated Bayesian learning

Next lecture: Communication and the Rational Speech Act model



