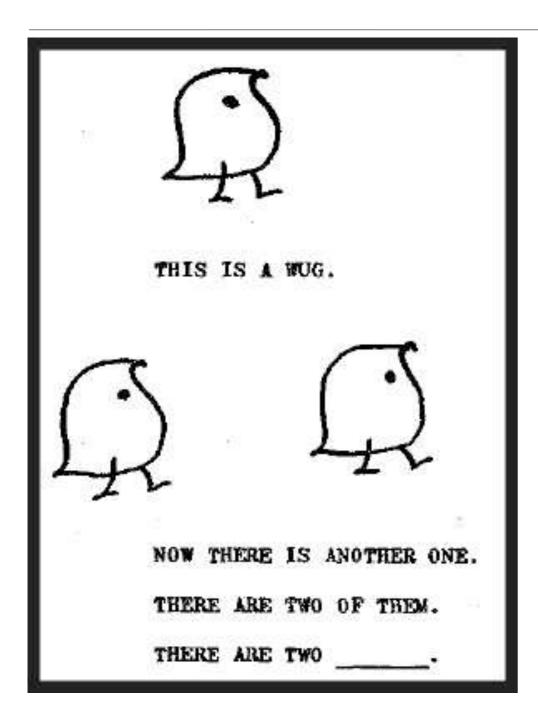
Simulating Language 3: Frequency learning and regularization

Simon Kirby ed.ac.uk

Variation in language

- An observation: languages tend to avoid having two or more forms which occur in identical contexts and perform precisely the same functions
- Within individual languages: phonological or sociolinguistic conditioning of alternation
- Over time: historical tendency towards analogical levelling

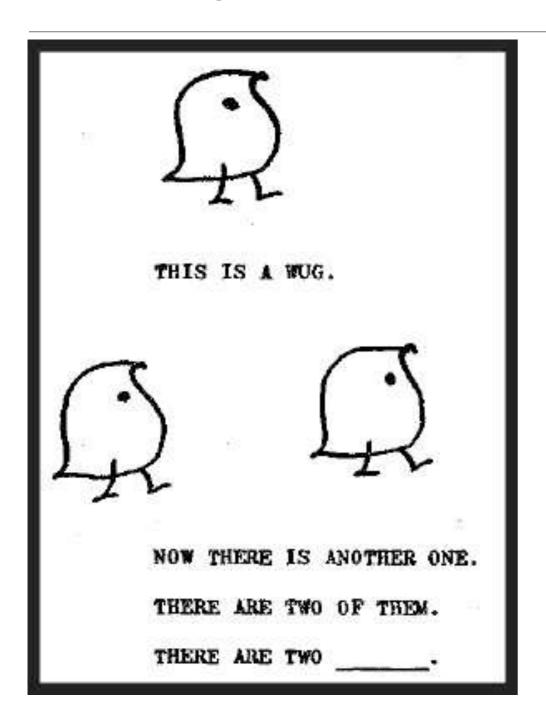
The wug test (Berko, 1958)



- · "wugs"
- Not "wugen"
 - ox, oxen
- Not "wug"
 - sheep, sheep
- Not "weeg"
 - foot, feet

These ways of marking the plural are relics of older systems which have died out: **loss of variability**

The wug test continued



- Three allomorphs for the regular plural, conditioned on phonology of stem
 - One wug, two /wxgz/
 - One wup, two /wxps/
 - One wass, two /wasez/
- Conditioning of variation

Variation in language

- An observation: languages tend to avoid having two or more forms which occur in identical contexts and perform precisely the same functions
- Within individual languages: phonological or sociolinguistic conditioning of alternation
- Over time: historical tendency towards analogical levelling
- During development: Mutual exclusivity; overregularization of morphological paradigms

Maybe biases in learning, patterns of language change, and the way languages work are all related somehow?

An artificial language learning study

Hudson-Kam & Newport (2005)

- Adults trained and tested on an artificial language
 - 36 nouns, 12 verbs, negation, 2 determiners
- Multiple training sessions
- Variable (unpredictable) use of 'determiners'

An artificial language learning study

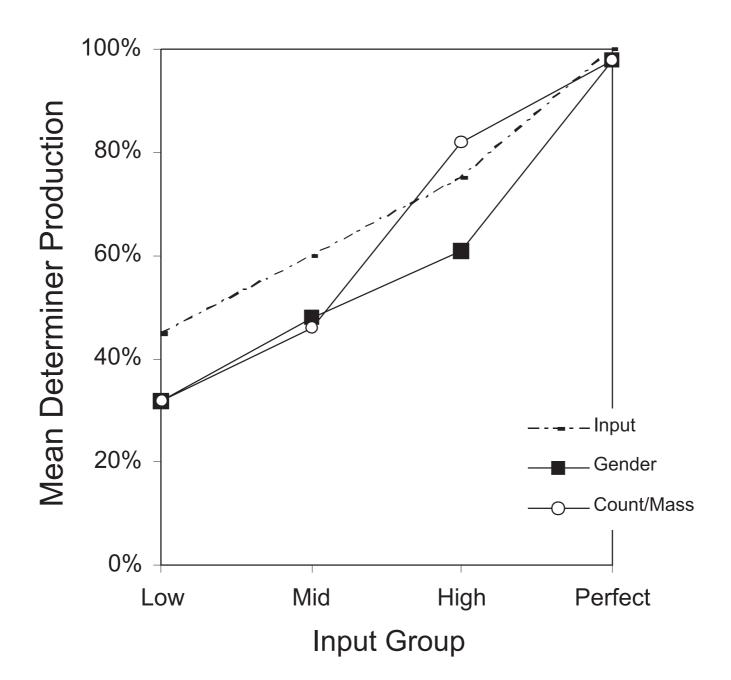
Hudson-Kam & Newport (2005), Experiment 1

- Adults trained and tested on an artificial language
 - 36 nouns, 12 verbs, negation, **2 determiners**
- Multiple training sessions
- Variable (unpredictable) use of 'determiners'

flern blergen (ka) flugat (ka) rams elephant (Det) giraffe (Det) "the elephant rams the giraffe"

Adults probability match

Probability matching: if trained on variable input, produce variable output, matching the input frequencies.



Adults probability match

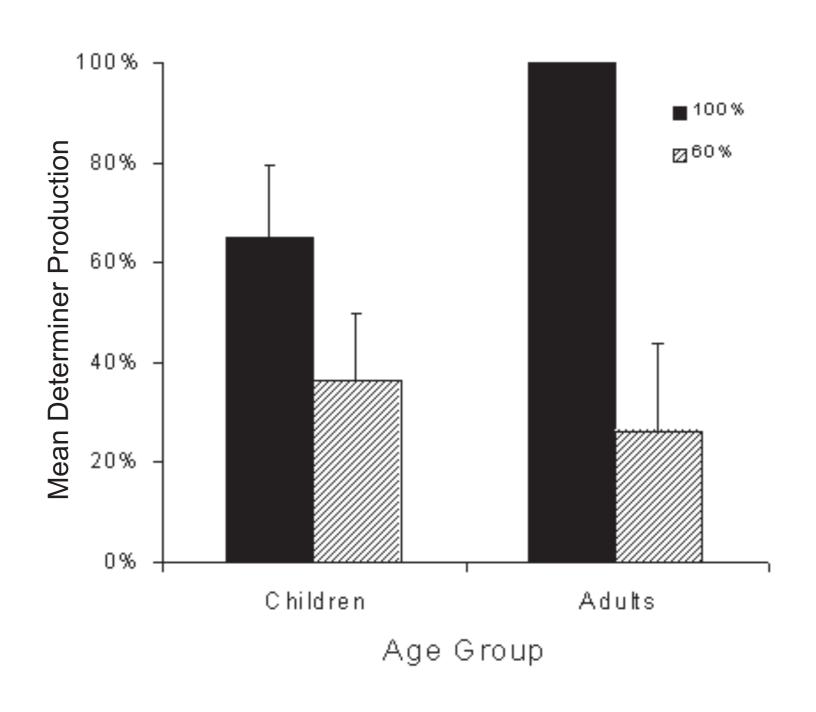
Probability matching: if trained on variable input, produce variable output, matching the input frequencies.

Input Group	Production Type				
	Systematic User	Systematic Non-User	Variable User		
100	100.0	0.0	0.0		
75	11.1	11.1	77.8		
60	0.0	25.0	75.0		
45	0.0	0.0	100.0		

Hudson-Kam & Newport (2005), Experiment 2

- Adults and children (age 6;4) trained and tested on an artificial language
 - 12 nouns, 4 verbs, **1 determiner**
- Multiple training sessions
- Variable (unpredictable) use of the determiner

Kids are more variable?



Kids (somewhat) more likely to regularize

Regularization: if trained on variable input, produce non-variable output.

Input Group	Production Type					
	Systematic User	Systematic Nonuser	Systematic Other	Systematic Total	Variable User	
Children						
100%	50.0	25.0	12.5	87.5	12.5	
60%	14.3	57.0	0.0	71.3	28.6	
Adults						
100%	100.0	0.0	0.0	100.0	0.0	
60%	0.0	50.0	0.0	50.0	50.0	

What's going on here?

- Do adults have the 'wrong' bias to explain how language is, how language changes?
- Do kids have different biases (i.e. a different prior)?
- Or do we just have bad intuitions about how a biased learner should behave?
- We need a model
 - Beta-binomial model from Reali & Griffiths (2009) we'll get to their paper next week

The model in a nutshell

- · Let's simplify: one grammatical function, two words which could mark it
 - word 0, word 1
- The learner gets some data
 - word 0, word 1, word 1, word 0, ...
 - ∅, ∅, ka, ka, ∅, ...
- And has to infer how often it should use each word
 - "I will use word 0 60% of the time, and word 1 40% of the time"
 - "I will use word 1 40% of the time"
 - $\theta = 0.4$

$$P(h|d) \propto P(d|h)P(h)$$

- The learner gets some data, d
 - word 0, word 1, word 1, word 0, ...
- And has to infer how often it should use each word, based on that data
 - θ
- The learner will consider several possible hypotheses about θ
 - Is word 1 being used 5% of the time? 15%? 25%? ...
 - $\theta = 0.05$? $\theta = 0.15$? $\theta = 0.25$? ...
- The learner will use Bayesian inference to decide what θ is

$$P(\theta|d) \propto P(d|\theta)P(\theta)$$

The likelihood

 Let's say that the probability of using word 1 is 0.5 - both words are equally likely to be used

•
$$\theta = 0.5$$

Let's say your data consists of a single item: a single occurrence of word 1

• What is the likelihood of this data, given that $\theta = 0.5$? i.e. what is p(d = [1] | θ = 0.5)?

• What is $p(d = [1,1,1] | \theta = 0.5)$?

• What is $p(d = [1,1,1] | \theta = 0.1)$?

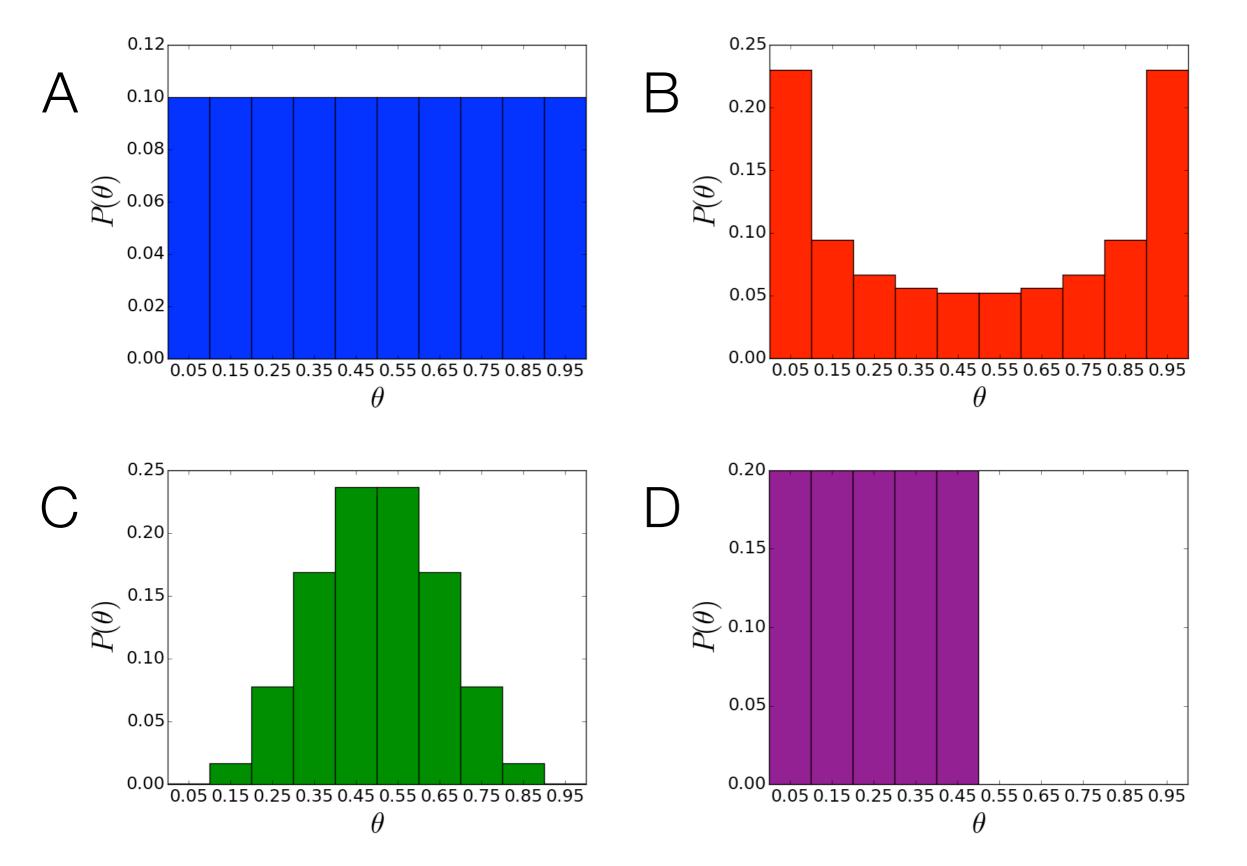
The likelihood: summary

- When θ is high, data containing lots of word 1 is very likely
- When θ is around 0.5, data containing lots of word 1 is less likely
 - A mix of 1s and 0s is more likely
- When θ is low, data containing lots of word 1 is very unlikely
 - Lots of word 0 is more likely

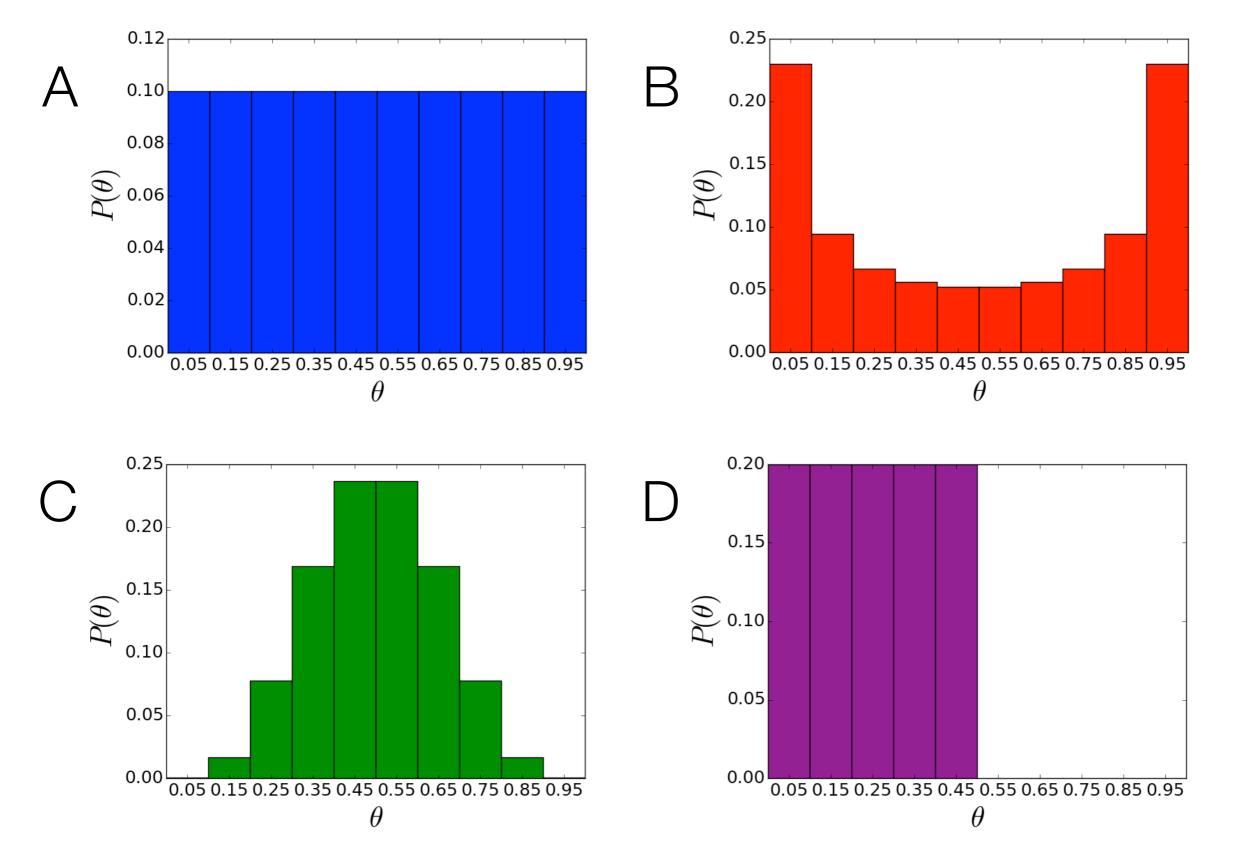
The prior

- Let's say our learner considers 10 possible values of θ
 - 0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95
- Our prior says, for each possible value of θ , how likely our learner thinks it is, before they have seen any data
 - High prior probability for a given value of θ means, before seeing any data, the learner thinks that value is likely
 - Low prior probability for a given value of θ means, a priori, the learner thinks that value is unlikely

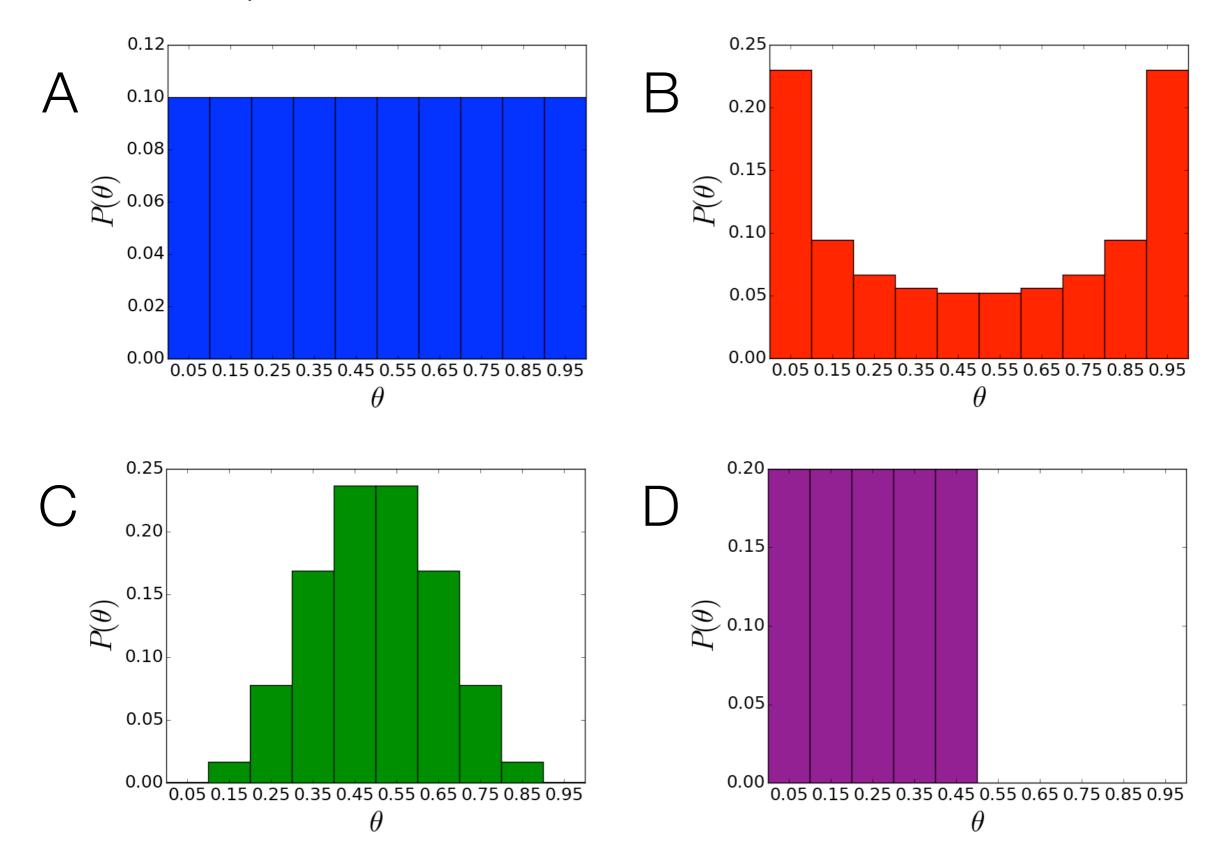
Which of these possible priors would be a good model for an **unbiased** learner, who thinks each possible value of θ is equally probable a priori?



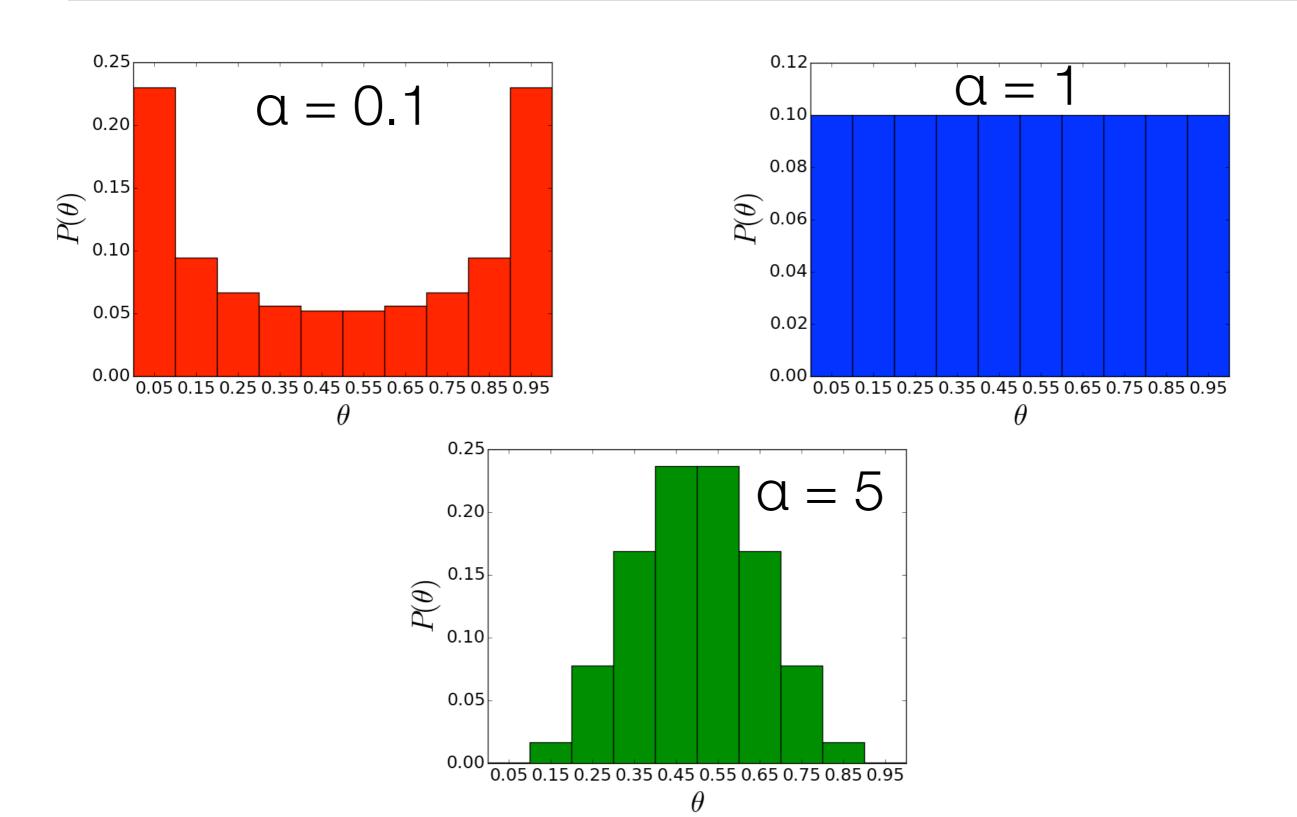
Which of these possible priors would be a good model for a biased learner, who thinks each word should be used roughly equally often?



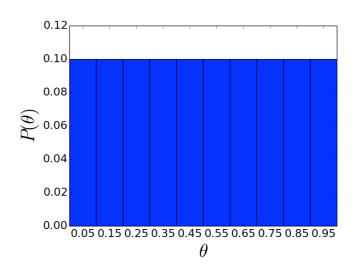
Which of these possible priors would be a good model for a **biased** learner, who thinks **only one word should be used** (but isn't sure if it should be word 0 or word 1)?



Our prior: the (symmetrical) beta distribution



- Let's say our learner considers 10 possible values of θ, i.e. our hypothesis space looks like this: 0.05, 0.15, 0.25, ... 0.75, 0.85, 0.95
- They have a uniform prior
- And they have some data: d = [1,1]

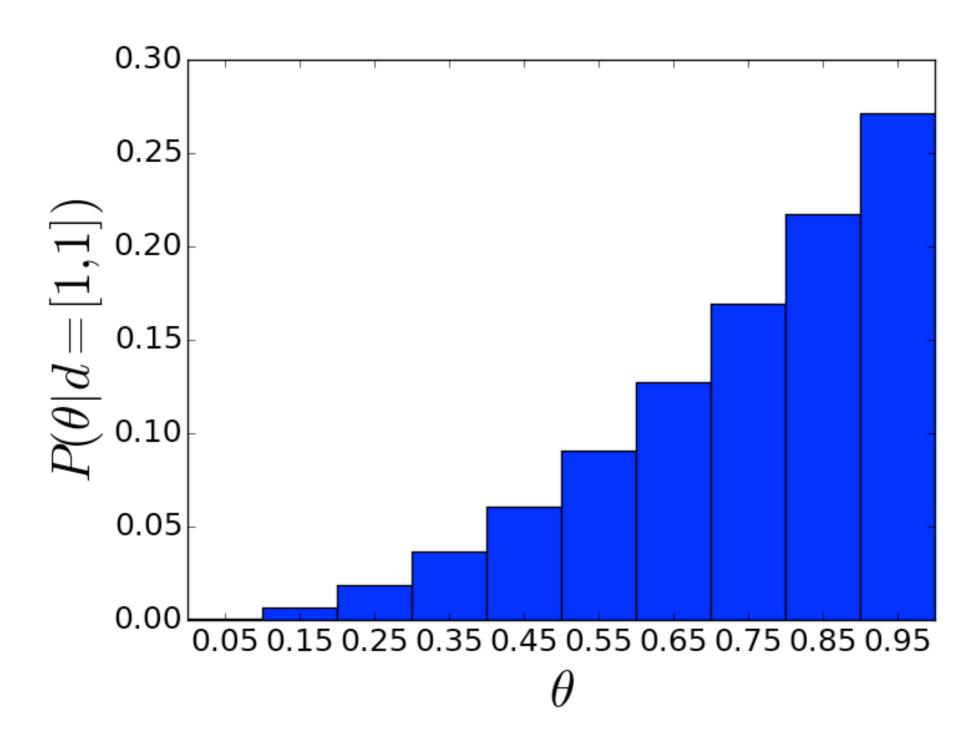


- We can calculate the posterior probability for each possible value of θ
- This gives us a posterior probability distribution

$$P(\theta|d) \propto P(d|\theta)P(\theta)$$

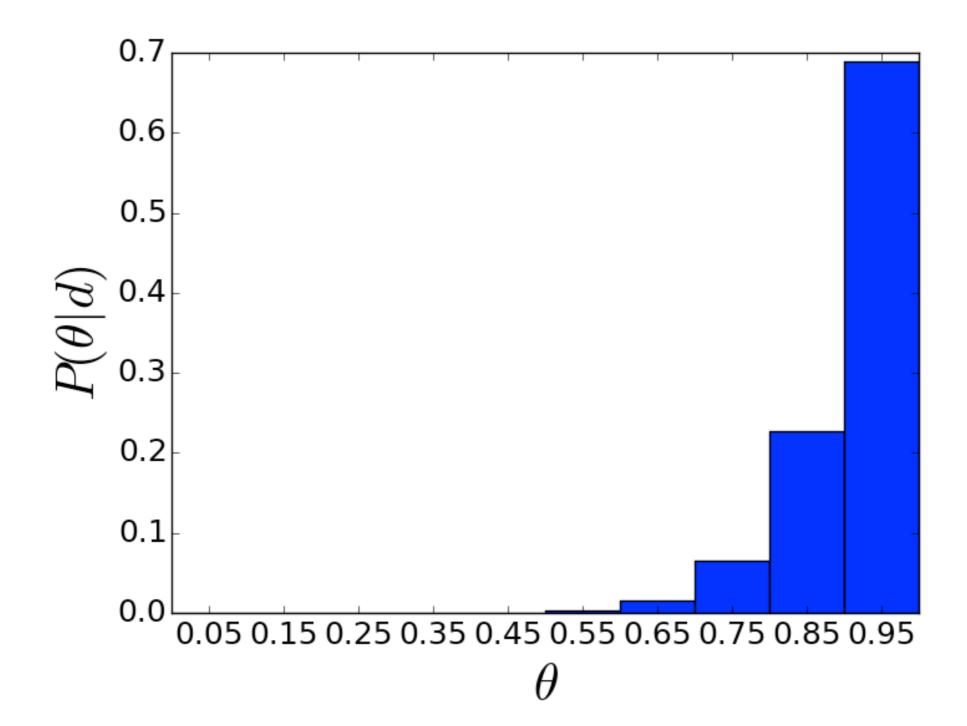
$$P(\theta|d) \propto P(d|\theta)P(\theta)$$

Uniform prior, d=[1,1]



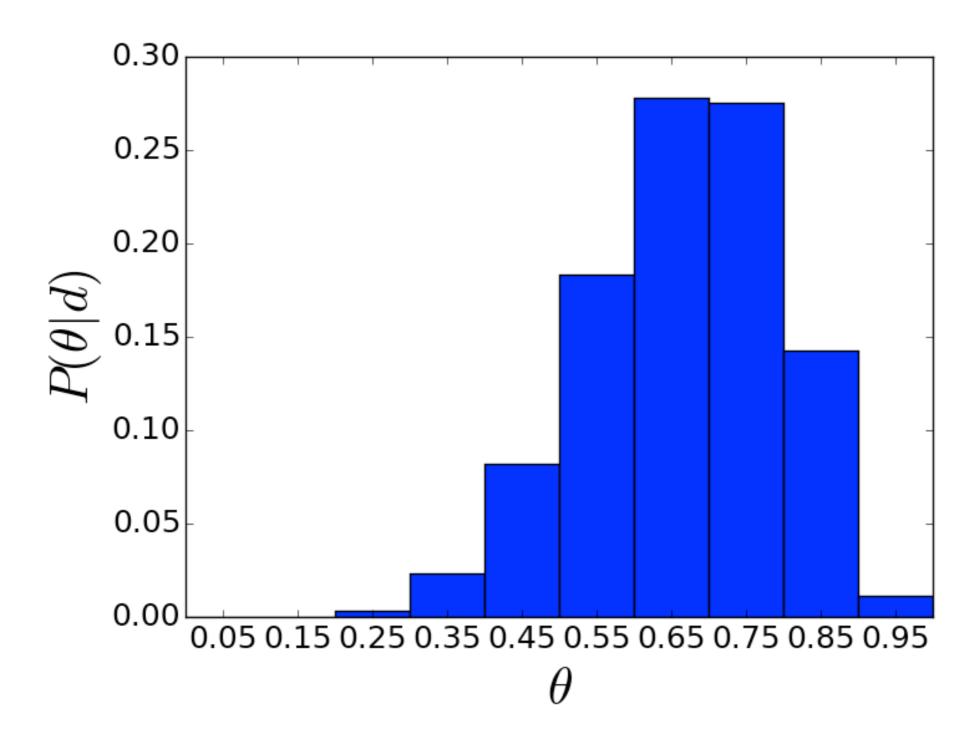
$$P(\theta|d) \propto P(d|\theta)P(\theta)$$

• Uniform prior, d=[1,1,1,1,1,1,1,1,1,1]



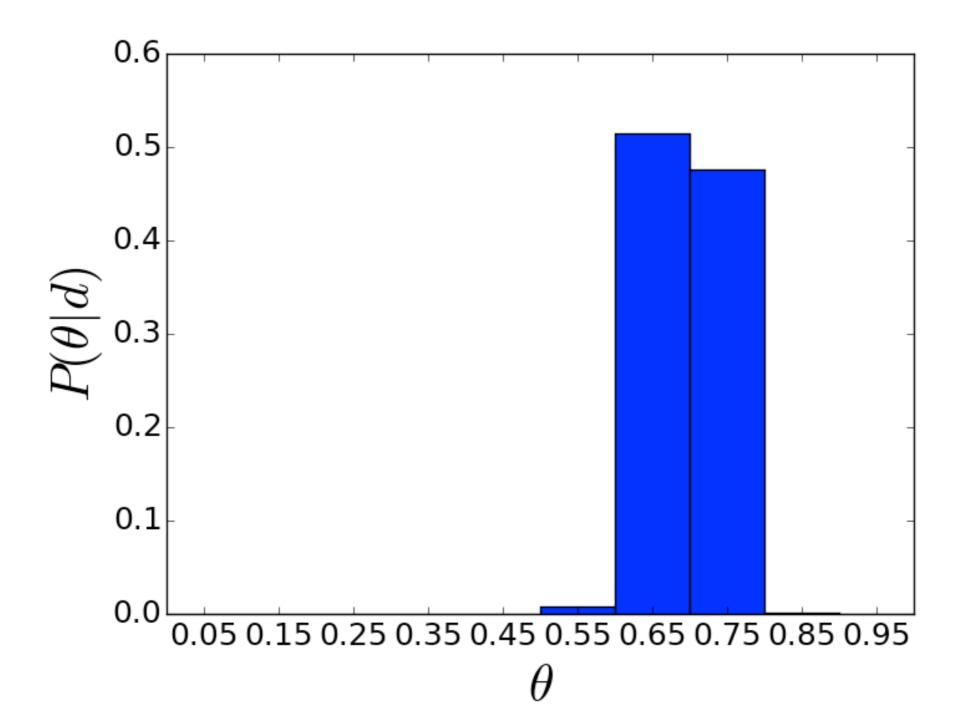
$$P(\theta|d) \propto P(d|\theta)P(\theta)$$

• Uniform prior, d=[1,1,1,1,1,1,1,0,0,0]



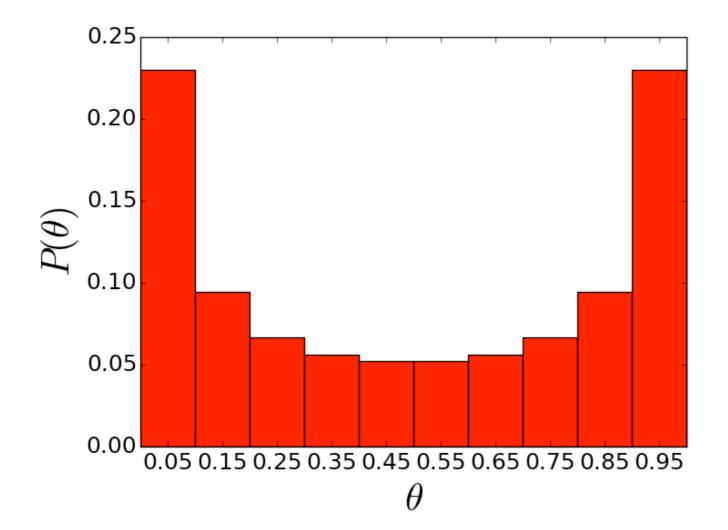
$$P(\theta|d) \propto P(d|\theta)P(\theta)$$

Uniform prior, d=[70 occurrences of word 1, 30 of word 0]



$$P(\theta|d) \propto P(d|\theta)P(\theta)$$

- What happens if we plug in a prior favouring regularity?
- Becomes quite hard to guess: let's run the model!



Coming up next!

- Lab: a simple Bayesian model of frequency learning
 - Play around with amount of data and the prior
 - See if you can get probability matching and/or regularization behaviours
- Next lecture: extending this model to iterated learning
 - What happens when learners learn from other learners?

References

Berko, J. (1958). The Child's Learning of English Morphology. Word, 14, 150-177.

Hudson Kam, C. L., & Newport, E. L. (2005). Regularizing unpredictable variation: The roles of adult and child learners in language formation and change. *Language Learning and Development*, 1, 151–195.

Reali, F., & Griffiths, T. L. (2009). The evolution of frequency distributions: Relating regularization to inductive biases through iterated learning. *Cognition*, 111, 317–328.