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P(h|d) < P(d|h)P(h)



Word learning



Learning the meaning of words




Quine (1960): meaning
underdetermined by data

* The four legged animal
| * The two legged animal
ﬁg@ - Some part of either (the leg, the hat, ...)

Some property of some part (the length
of the leg, the material of the hat)

//U - Nothing to do with what you’re seeing
p (“I’'m hungry”)

- Something weirder (a wet nose and a
waggable tail, but only until Scotland
win the World Cup)

=N

There are in principle infinitely many possible
meanings for “doggy” which would be consistent with
this usage, and any possible sequences of usages




| earners must have some constraints on word
meaning

Minimally: to rule out the extremely wacky word meanings
But maybe they are more detailed:

» EXxpectations about meanings (e.g. words refer to whole
objects, words refer to basic-level categories, words
generalise by shape of referent, ...: Machamara, 1972;
Markman, 1989; Landau, Smith & Jones, 1988)

- Expectations about words (e.g. word meanings are mutually
exclusive: Markman & Wachtel, 1988)
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f the constraints on learning are strong, how do
we learn words that don’t fit the constraints®?



Word learning as Bayesian inference

P(h|d) o< P(d|h)P(h)

* Xu, F., & Tenenbaum, J. B. (2007) Word learning as Bayesian Inference.
Psychological Review, 114, 245-272

* You are trying to use evidence provided by instances of word use to infer
unobservable word meaning

hypotheses = word meanings
data = labelling events
likelihood = how word meanings lead to labelling events

prior = the kind of meanings | expect words to have


https://www.researchgate.net/profile/Fei_Xu18/publication/6330774_Word_Learning_as_Bayesian_Inference/links/0046352ef984db7317000000.pdf
https://www.researchgate.net/profile/Fei_Xu18/publication/6330774_Word_Learning_as_Bayesian_Inference/links/0046352ef984db7317000000.pdf

Thisis afep

What does fep mean?
A. Dalmatian
B. Dog

C. Animal



These are also feps

What does fep mean?
A. Dalmatian
B. Dog

C. Animal



Here are 3 daxes

What does dax mean?
A. Dalmatian
B. Dog

C. Animal
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Quantifyinga P(hld) o P(d|h)P(h)
suspicious coincidence

3 hypotheses under consideration

fep=dalmatian’

fep=dog’

fep=animal’




Quantifyinga P(hld) o P(d|h)P(h)
suspicious coincidence
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Likelihood: P( [

fep=dalmatian’

fep=dog’

fep=animal’




Quantifyinga P(hld) o P(d|h)P(h)
suspicious coincidence
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Likelihood: P( [

fep=dalmatian’

fep=dog’

fep=animal’




Quantifyinga P(hld) o P(d|h)P(h)
suspicious coincidence

“fep 7
2

fep=animal’



Quantifyinga P(hld) o P(d|h)P(h)
suspicious coincidence

Likelihood: P( [t %

fep=dalmatian’

fep=dog’

fep=animal’




Quantifyinga P(hld) o P(d|h)P(h)
suspicious coincidence

\ | fep=dalmatian’) = 1/3

' - | fep=dog’ ) = 1/6

| fep=animal’ ) = 1/9



Quantifyinga P(hld) o P(d|h)P(h)
suspicious coincidence

“fep’J “fepJ’ “fepJ,
‘ | fep=dalmatian’) = 1/3 x 1/3 x 1/3 = 1/27
“fep’, “fep” “fep”
bie O B | fep=dog’) = 1/6 x 1/6 x 1/6 = 1/216
“fep”

| fep=animal’ ) = 1/9 x 1/9 x 1/9 = 1/729



Quantifyinga P(hld) o P(d|h)P(h)
suspicious coincidence

“daX” “daX” “daX”

Likelihood: P( e PR | dax=dalmatian’) = 7?7

fep=dalmatian’

fep=dog’

fep=animal’




Quantifyinga P(hld) o P(d|h)P(h)
suspicious coincidence

“daX”

—dog’ ) = 2?27
ﬁ | dax=dog’ ) = ??

“daX”

fep=animal’



Quantifyinga P(hld) o P(d|h)P(h)
suspicious coincidence

udaxn udaxn udaX”
ﬂ ®R | dax=daimatian’) = 1/3x 0 x 0 =0

“daX” “daX” “daX”

m ﬁ | dax=dog’)=1/6 x 1/6 x 1/6 = 1/216

“daX” “daX” “daX”

ﬁ | dax=animal’ ) =1/9x1/9x1/9 =1/729




Xu, F.. & Tenenbaum, J. B. (2007) Word learning as
Bayesian Inference. Psychological Review, 114,
245-272



https://www.researchgate.net/profile/Fei_Xu18/publication/6330774_Word_Learning_as_Bayesian_Inference/links/0046352ef984db7317000000.pdf
https://www.researchgate.net/profile/Fei_Xu18/publication/6330774_Word_Learning_as_Bayesian_Inference/links/0046352ef984db7317000000.pdf
https://www.researchgate.net/profile/Fei_Xu18/publication/6330774_Word_Learning_as_Bayesian_Inference/links/0046352ef984db7317000000.pdf

Thelr task

These are feps

Show me all the feps
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Model predictions
P(h|d) o< P(d|h)P(h)
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Adults



. . P(h|d) oc P(d|h)P(h)
Add a basic-level bias

Uniform prior
P(fep=dalmatian’) = P(fep=dog’) = P(fep=animal’)
Prior with a basic-level bias

P(fep=dog’) > P(fep=dalmatian’) = P(fep=animal’)
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Why might adults and children come to this word
learning task with different priors®




Coming up next!

- Lab: a simple Bayesian model of word learning

- Basic framework for Bayesian models

 Play around with suspicious coincidences, the prior
* Next lecture: a Bayesian model of frequency learning

* No pre-reading for lecture 3: catch up on the intro to
probabilities and Bayes set for today...

. ...or read Xu & Tenenbaum (2007), it’s very rich
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