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How can we explain language structure?
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Cultural evolution through iterated learning
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Gene-culture co-evolution
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My view: 

The unique structural properties of language are the inevitable result of 
cultural evolution operating on weak, domain-general biases favouring 
compressible representations.


Biological evolution has given our species the capacity for culture.

The rest follows for free.



Where next?



Explaining more aspects of linguistic structure

SIMPLICITY EXPRESSIVITY

Compositionality

Learning Communication

Duality of Patterning

Kinship systems

Colour terms

Semantic universals
(Kemp & Regier 2012)
(Zaslavsky et al 2018)
(Carr et al 2020)
(Carcassi et al 2019)
(Mollica & Kemp 2020)



Deep learning modelsaffine transformation of image features f(·) extracted from a convolutional neural network (CNN).
Message mt is obtained by sequentially sampling until the maximum possible length L is reached or
the special token <S> is generated.

Figure 1: Architectures of sender and receiver.

The inputs to the receiver are the generated message mt and a set of images that contain the target
image t and distracting images {dk}Kk=1. Receiver interpretation of the message is given by the affine
transformation g(·) of the last hidden state hr

l of the LSTM network that reads the message. The loss
function for the whole system can be written as:
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The energy function E(v,mt) = �f(v)T g(hr
l (mt)) can be used to define the probability distribution

over a set of images p(v|mt) / e
�E(v,mt). Communication between two agents is successful if the

target image has the highest probability according to this distribution.

2.2 Grounding in Natural Language

To ensure that communication is accomplished with a language that is understandable by humans,
we should favour protocols that resemble, in some respect, a natural language. Also, we would like
to check whether using sequences with statistical properties similar to those of a natural language
would be beneficial for communication. There are at least two ways how to do this.

The indirect supervision can be implemented by using the Kullback-Leibler (KL) divergence reg-
ularization DKL (q�(m|t)kpNL(m)), from the natural language to the learned protocol. As we do
not have access to pNL(m), we train a language model p! using available samples (i.e. texts) and
approximate the original KL divergence with DKL (q�(m|t)kp!(m)). We estimated the gradient
of the divergent with respect to the � parameters by applying ST-GS estimator to the Monte Carlo
approximation calculated with one sampled message from q�(m|t). This regularization provides
indirect supervision by encouraging generated messages to have a high probability in natural language
but at the same time maintaining high entropy for the communication protocol. Note that this is a
weak form of grounding, as it does not force agents to preserve ‘meanings’ of words: the same word
can refer to a very different concept in the induced artificial language and in the natural language.

The described indirect grounding of the artificial language in a natural language can be interpreted as
a particular instantiation of a variational autoencoder (VAE) (Kingma and Welling, 2014). There are
no gold standard messages for images. Thus, a message can be treated as a variable-length sequence
of discrete latent variables. On the other hand, image representations are always given. Hence they
are equivalent to the observed variable in the VAE framework. The trained language model p!(m)
serves as a prior over latent variables. The receiver agent is analogous to the generative part of the
VAE, although, it uses a slightly different loss for the reconstruction error (hinge loss instead of
log-likelihood). The sender agent is equivalent to an inference network used to approximate the
posteriors in VAEs.

3

Replacing the Bayesian learners 
with artificial neural networks

(Havrylov & Titov 2017)



Modelling populations

colonization of the New World (and the population reduction that
ensued) [34].

Discussion

Languages that are on the exoteric side of esoteric-exoteric
continuum—as indicated by larger speaker populations, greater
geographical coverage, and greater degree of contact with other
languages—had overall simpler morphological systems, more
frequently express semantic distinctions using lexical means, and
were overall less grammatically specified. This was true both for
quantitative grammatical measures such as the number of different
grammatical categories encoded by verbal inflections (feature 6)
and case markings, as well as for qualitative grammatical types.

For example, languages spoken in the exoteric niche were
associated with a lack of conventional strategies for encoding
semantic distinctions like situational/epistemic possibility, eviden-
tiality, the optative, indefiniteness, the future tense, and both
distance contrasts in demonstratives (consider the rarity of the
English ‘‘over yonder’’) and remoteness distinctions in the past
tense.

With few exceptions, the same patterns were observed whether
population, area, or linguistic contact was used in the model.
Overall, the population model provided the greatest predictive
power.

As noted above, semantic distinctions coded lexically are more
likely to be optionally expressed than those coded inflectionally
(e.g., lexical versus inflectional encoding of tense). Thus, languages
that are less grammatically specified tend to rely more on extra-
linguistic information such as pragmatics and context [13].
Reduced reliance on morphology also has the effect of increasing
the transparency between word-forms and meanings (form-
meaning compositionality) [2]. Consider the high occurrence of
exceptions in the inflectionally marked past tense forms of English
compared to the perfect regularity of the modally marked future
tense. One reason for the inverse relationship between morphol-
ogy and form-meaning compositionality is that inflections such as
affixes are, by definition, phonologically bound to the stem, which
increases opportunities for phonological compression and sound
change to disrupt regular mappings between form and meaning.
Thus, although it is logically possible to have complex inflectional
morphology that is highly regular (frequently classified as
agglutination), in practice, coarticulation, historical sound change,
and other phonological/articulatory processes often subvert this
regularity and lead to more idiosyncratic mappings [35–37]. We
found that the relationship between exotericity and increased
form-meaning compositionality holds not only for specific
linguistic features like tense and evidentiality, but is also supported
by the observation that languages in the exoteric niche are more
likely to be classified by typologists as being isolating rather than
concatenative or fusional [38].

Figure 3. Languages spoken by more people have simpler
inflectional morphology. X-axis scores represent a measure of lexical
devices compared to the use of inflectional morphology. Filled symbols
represent population means for languages with a given complexity
score; bars show 95% confidence intervals of the median. Bar width is
proportional to sample size for each score.
doi:10.1371/journal.pone.0008559.g003

Figure 4. Complexity of verb morphology by language family and geographic regions. (A) Inflectional synthesis of the verb (feature 6 in
Table 1) plotted against the mean number of speakers for the largest language families (those containing $32 languages). (B) Inflectional synthesis of
the verb collapsed by continent. Each point plots the average feature value for the language family. The regression line is flanked by 95% CIs. Eurasia
corresponds to the region 38uN–71uN/29uE–172uW.
doi:10.1371/journal.pone.0008559.g004
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Population size, role of children vs. adult 
learners, number of strangers you 
communicate with all may affect the 
complexity and variability of your language.

Modelling can help sort out these factors.

(Lupyan & Dale 2010)

ABSL

NSL



How did this system get off the ground?

We’ve looked at the evolution of prior bias and 
hypothesis selection strategy.

But that’s not really getting at how we evolved to learn 
and culturally transmit language in the first place!

What do we need to do iterated learning of language?

Learn sets of signals + use them to discriminate meanings



Extra reading if you’re interested

Kirby, S. (2017). Culture and biology in the origins of linguistic 
structure. Psychonomic bulletin & review, 24(1), 118-137.

https://link.springer.com/article/10.3758/s13423-016-1166-7
https://link.springer.com/article/10.3758/s13423-016-1166-7

